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Abstract

Background: The contact networks between individuals can have a profound impact on the evolution of an
infectious outbreak within a network. The impact of the interaction between contact network and disease dynamics
on infection spread has been investigated using both synthetic and empirically gathered micro-contact data,
establishing the utility of micro-contact data for epidemiological insight. However, the infection models tied to
empirical contact data were highly stylized and were not calibrated or compared against temporally coincident
infection rates, or omitted critical non-network based risk factors such as age or vaccination status.

Methods: In this paper we present an agent-based simulation model firmly grounded in disease dynamics,
incorporating a detailed characterization of the natural history of infection, and 13 weeks worth of micro-contact
and participant health and risk factor information gathered during the 2009 H1N1 flu pandemic.

Results: We demonstrate that the micro-contact data-based model yields results consistent with the case counts
observed in the study population, derive novel metrics based on the logarithm of the time degree for evaluating
individual risk based on contact dynamic properties, and present preliminary findings pertaining to the impact of
internal network structures on the spread of disease at an individual level.

Conclusions: Through the analysis of detailed output of Monte Carlo ensembles of agent based simulations we
were able to recreate many possible scenarios of infection transmission using an empirically grounded dynamic
contact network, providing a validated and grounded simulation framework and methodology. We confirmed
recent findings on the importance of contact dynamics, and extended the analysis to new measures of the relative
risk of different contact dynamics. Because exponentially more time spent with others correlates to a linear increase
in infection probability, we conclude that network dynamics have an important, but not dominant impact on
infection transmission for H1N1 transmission in our study population.
Background
The threat of emerging infectious diseases has stimulated
the search for techniques to prevent and control com-
municable disease spread [1]. Simulation models have
emerged as key tools in examining trade-offs between
multiple health interventions, and in aiding the control
of communicable diseases [2]. While properly parameter-
ized and calibrated models can inform decision making,
building such models is challenging because critical
parameters are difficult to measure precisely, including
the structure and dynamics of contact networks among
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population members, which shape the spread of both
pathogens and risk behaviors.
Data collected by contact tracing [3] and self-reporting

[4] has provided some important insights into network
structure for many notifiable illnesses. Unfortunately, even
for the best models, contact data depends heavily on unre-
liable self-reporting data collection methodologies [5]
which omit much detail and place a substantial recording
burden on participants [4]. Because of the less tangible
character of contacts involved, determining contact net-
work structure for air-borne pathogen spread requires col-
lection of additional information on casual contacts [4].
While self-reported measures can provide insight, some
leading studies have noted the desirability of employing
automated data-collection approaches to capture higher fi-
delity contact frequency and duration information [4].
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Some early work in the linking of health and micro-con-
tact data has been reported [6,7]. The work of [6], with
their single-day tracking of several hundred high-school
students, forms a particularly important basis and meth-
odological framework for the integration of micro-contact
data and disease simulation models. However, in both
these cases, limited health information was collected and a
stylized infection model was utilized to extract the impact
of contact network dynamics on the spread of infection.
As the first influenza pandemic in decades, the H1N1

pandemic – whose initial outbreak was described in
April 2009 – served as a catalyst for research into con-
trol of emerging infectious diseases. Within the study site
of Saskatoon (a Midwestern Canadian city of approxi-
mately 250,000 people) H1N1 first emerged in Spring
2009, and followed the typical summer quiescence, and
Autumnal re-emergence. By mid-October, cases of
H1N1 began a notable rise [8]. At the same time, vaccin-
ation initiated in a staged fashion. Mass vaccination pro-
ceeded aggressively from early November through
December 18. Vaccination data suggest that approxi-
mately 50% of the city population was vaccinated [9].
Aided by the staged vaccination process, reported cases
of influenza in 2009–2010 peaked unusually early (mid-
November). Low numbers of influenza cases were
reported in December 2009 and thereafter. Most circu-
lating influenza transmission in Saskatchewan over this
period was drawn from the H1N1 strain [8].
In anticipation of the significance of the 2009–2010 in-

fluenza season, the co-authors had launched a previ-
ously-described [10] pilot study in the City of Saskatoon
to electronically collect contact patterns between 36 par-
ticipants in addition to their influenza-related health sta-
tus information. Each participant was requested to carry
a proximity sensor at all times during the study period,
as well as to fill out a sequence of weekly health surveys
via a web browser. The study started on November 9th
2009 and finished on February 9th 2010, collecting all
contacts between 36 individuals for 92 days. It recorded
a total of approximately 265,000 thirty-second proximity
time slots between individuals cross-linked to weekly
self-reported health status and contact history.
In this work, we sought to integrate rich contact

micro-data collected in [10] with an adaptation of a well-
grounded individual-level Canadian transmission model
[11], and population-level statistics on the infection rates
for the province where the outbreak occurred in an
agent-based model. Our study objectives were threefold:
to assess the effectiveness of incorporating contact
micro-data with models of infectious disease, to identify
features within empirical contact patterns that exerted
disproportionate impacted on infection spread, and to
validate these findings against self-reported health status
information.
Unlike [6] we opt for a smaller study population (36 as
opposed to 788) but much longer duration (92 days as
opposed to a single day) allowing us to evaluate the evo-
lution of contact patterns and disease with the health
state of the individuals throughout the flu season. Using
collected health data, we can compare the results of our
simulation to the infection rate in the province and
amongst the participants. In this paper we make the fol-
lowing contributions:

1. A novel methodology for integrating disease,
population level, and micro-contact data into a
coherent agent-based simulation framework,
validated by comparison with the actual health status
of the study population;

2. A comparison of metrics for measuring the risk
associated with contact and contact-duration,
culminating in a novel measure: log time-degree
(LTD);

3. A demonstration of the utility of micro-contact data
during an epidemic outbreak based on both
empirical and simulation results;

4. A preliminary investigation into the role of dynamic
network structure on the spread of disease, and the
impact of vaccination on that structure.

Methods
Our primary data source was Flunet [10]. While other
contact datasets are available [6,12], and others with health
information have been described [13], Flunet is unique in
providing longitudinal information on contact patterns,
occurrence of influenza-like illness (ILI) symptomology,
and vaccination status obtained during an epidemic out-
break in the region under observation. Our micro-contact
data contained detailed inter-participant contact patterns
but lacked data about the threat of infection from non-
participants, which we modeled using reported H1N1 inci-
dence data for the same time and province as the contact
data [8]. A system diagram outlining the flow of data and
state changes is shown in Figure 1.
The simulation model is encapsulated in the dashed box.

Agents remained in a susceptible state unless acted on by
an infection event. Such stochastic events were triggered
externally using the exogenous pressure data derived from
case reports [8], or internally through contact with an
infected agent. The likelihood of endogenous infection was
governed by contact and vaccination data from [10] and in-
fection risk information drawn from [11]. Because we
assumed H1N1 re-infection risk to be negligible, agents in
the recovered or vaccinated state remained there until the
simulation ended. If an agent became infected, the infection
ran its course deterministically through the stages of infec-
tion. The duration of each infection stage was drawn from
the distributions in [11] and derived quantities.



Figure 1 Simulation structure and flow.
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We performed Monte Carlo ensembles of stochastic dy-
namic simulations operating on the contact data, where the
primary variables drawn from distributions were disease
stage durations, exogenous infection event rates and the
probability of transmission from infected endogenous con-
tacts. Ensembles were selected in a memoryless fashion
based only on the disease parameters. In every realization
(simulation run), the contact record was stepped through
like an animation, creating exactly the same sequence of
contacts in the course of every Monte Carlo realization,
which we have termed a Groundhog Day technique, after
the 1993 movie of the same name. This is similar to the
technique we employed in [7], but different from the tech-
nique employed by [6] where a single daily aggregate contact
network was employed. While our technique is computa-
tionally more expensive, it captures inter- and intra-day het-
erogeneity in the contact network. While agents repeatedly
relived the same sequence of contacts in different realiza-
tions, the stochastics associated with infection progression
and transmission gave rise to differences in disease spread.

Contact data
The Flunet study population consisted of 36 participants,
each carrying a small wireless sensor (or “mote”) capable
of short-range wireless communication [10]. Participants
were asked to carry the sensors with them at all times
during the experiment period. In addition, 11 stationary
motes were deployed at fixed high-traffic locations,
picked by experimenters, in order to study the contact
patterns between people and places [14]. Three of these
stationary motes were also connected to a networked PC
and acted as data sinks, opportunistically receiving accu-
mulated data from nearby mobile motes.
When two motes were in close proximity, they would

each record a contact with a minimum resolution of 30
seconds. Each contact record represented a contact ses-
sion between two motes, which included the start and end
time of a contact, and the distance between the adjacent
motes. A contact’s distance was estimated by binning the
received signal strength indicator (RSSI, a measure of the
wireless signal strength) into close (< 5 m), medium (5–
15 m) and far (>15 m) bins [10]. Although contacts be-
tween participants and stationary nodes at various ranges
were recorded, only close contact data from person-person
interactions are considered here. Participants were asked
to fill out a sequence of weekly health surveys which
included symptoms and diagnoses of ILI, reported date of
H1N1 vaccination, and self-reported contact patterns.
Demographic data was collected in a single survey at the
conclusion of the study.
A preliminary analysis of the dataset is provided in

[10]. Analysis in Figure 2a and 2b has been reproduced
here for the readers’ convenience while additional ana-
lysis germane to the application of the dataset to agent-
based modeling of infectious disease (Figure 2c and 2d)
has been added.



Figure 2 Flunet Findings. a) Contact histogram by hour of day, b) CCDF of contact duration, c) Connectivity graph with threshold of 18 minutes
per day average contact. Black nodes represent stationary nodes associated with a location, and are included in this graph for illustrative purposes
only. d) Network span for close and all contacts.
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Figure 2a shows that contacts are tightly clustered
throughout the workday, with staff arriving in the morn-
ing and graduate students trickling in throughout the
day. Sporadic contacts are recorded throughout the
evening and night. This figure also illustrates that the
contact data contains primarily workplace relationships.
Figure 2b shows the complementary cumulative distribu-
tion function (CCDF) of contact duration. In addition to
the CCDF for all the collected data (solid line), we
removed contacts with durations exceeding 7 hours
(0.03% of total reported contacts) from the raw dataset
(dashed line) because we assumed contact of this dur-
ation was due to sensors abandoned near each other. Re-
moving this section of data yields considerable
differences in the distribution’s tail. The CCDF is broadly
consistent with other long-term datasets of this nature
[15]. The heterogeneity of the contact distribution is im-
portant for our hypotheses and assumption - that con-
tact dynamics have significant impacts on infection rate
as initially noted by [6] – which in turn drove the simu-
lation design. In Figure 2b, contact duration spans more
than two orders of magnitude. If we posit that an infec-
tious individual gives rise to contagious events (e.g.,
sneeze or cough) with some stochastic arrival probability
independent of the contact duration, a susceptible is
likely to experience more contagious events in a pro-
longed contact than in a shorter one, a property assumed
in some other modeling studies [16].
To visually highlight the impact of cliques and place

on the dataset, Figure 2c plots the relationship between
contacts which existed for an average of 18 min/day.
This threshold was to represent a plausible amount of
time per day that a regular contact might have occurred
over the course of the study, bearing in mind that week-
ends and holidays are included in the denominator.
Black nodes represent stationary nodes associated with a
location, and are included in this graph for illustrative
purposes only. As is apparent in the graph, nodes that
are generally collocated have a high degree of contact
with each other. Nodes that are not collocated have
much lower connectivity, with the exception of a few
bridging individuals.
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Given the importance of network structure, we consider
the span of the network in Figure 2d, which is closely
related to degree centrality (see Network Metrics Section).
This graph is shown for two scenarios: a scenario where
only close proximity constitutes a contact, and a scenario
where any detectable presence qualifies. When limiting the
analysis to close contacts, the histogram is both more
peaked and has a lower mean than when considering all
the possible contacts. The modes are 22 and 31, respect-
ively, implying that many participants saw most of the
other participants at least once. However, because it is not
saturated at the maximum (as would be the case if all parti-
cipants saw all other participants) it is logical to
hypothesize that some partially isolated cliques exist, and
that the close contact network is more strongly cliqued.

Transmission model
Model design
The simulation model classified each individual in the
sample population into one of seven states: Susceptible,
Latent, Asymptomatically Infectious, Symptomatic Infec-
tious, Symptomatic Non-Infectious, Recovered, and Vacci-
nated. All the agents in the model started in the
Susceptible state, consistent with limited pre-existing
population immunity to H1N1. A susceptible individual
could contract the infection either from exogenous or
endogenous sources. Exogenous sources are defined as
the population outside the study who were in contact
with Flunet participants and could transmit the infection
to the monitored individuals, while endogenous sources
are other Flunet participants in an infectious state.
Dynamic transmission models differ in their treatment of

contacts. For some epidemiological contexts, the contacts
underlying transmission are of defined or bounded duration
– for example, needle sharing, sexual encounters, and blood
transfusions. For this class of contacts, the frequency rather
than the duration of contacts is the primary source of vari-
ability in transmission risk. For air-borne infections, however,
the likelihood of transmission rises not only with contact fre-
quency, but also with contact duration [6,16].
For the case of H1N1 influenza transmission, our

model assumes that on-going contact between two dis-
cordant individuals provides a conduit for transmission,
where the likelihood density of transmission is a constant
independent of contact duration. More specifically, we
posit that an infectious individual gives rise to potentially
contagious events (e.g., sneeze or cough) at a fixed rate
v. We further treat any susceptible individual in contact
with that person as having a likelihood β of contracting
the infection for each such infectious event. Similar to
the analysis of [6,16], infections are more likely to occur
in a longer contact than in a shorter one.
Given this model, the basic reproductive number R0

(the average number of secondary infections caused by
an infective individual, in an otherwise susceptible popu-
lation) is as follows:

R0 ¼ �Ti �FCvβ

where �Ti is the mean duration of infectiousness in days,
�Fc represents the average daily cumulative contact dur-
ation of an individual in time slots (summed regardless
of concurrency), v is the number of potentially infecting
events per time slot of contact between two individuals,
and β is the mean likelihood of a susceptible will be
infected by a given infecting event.
For endogenous infections, we assumed that the mean

of the basic reproductive number R0 for our study popu-
lation was equal to 1.31, identical to that reported in a
prominent Canadian H1N1 study [11]. For an infective
person, the infection hazard of infecting an adjacent sus-
ceptible individual per time step (βv) was thus deter-
mined as follows:

βv ¼ R0

�Ti �Fc

Where Ti is set to 3.38 [11], and �Fc is computed using
recorded data in Flunet dataset according to the follow-
ing formula:

�Fc ¼
PNp

i¼1

PNpj6¼i
j¼1 Tc i; jð Þc
NpNd

where Np represents the number of study participants,
Nd gives the study duration, and Tc(i, j) indicates the total
duration of contacts (in days) between nodes i and j dur-
ing Nd days.
The per-week infection hazard of acquiring the infec-

tion from exogenous sources was determined according
to the following formula:

Px kð Þ ¼ Nk

NU �Pk�1
i¼1 Ni

where k refers to the week number since the start of the
simulation, Ni gives the number of laboratory confirmed
H1N1 cases in the province of Saskatchewan during the ith

week of the 2009–2010 influenza season, and NU refers to
the total population of the province. The denominator repre-
sents an estimate of the number of susceptible individuals in
the province. The entire denominator thus estimates the
number of susceptible individuals who remain at risk in
week k. We note here the computation of susceptible indivi-
duals in the denominator consider neither the vaccination
status of the population (for which reliable data was not
available at the time of simulation), nor the infections that
took place during the previous influenza season. This formu-
lation therefore systematically underestimates the actual in-
fection pressure. We compensate for this systematic error by
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providing a thorough exploration of the space of possible
transmission probabilities (Figure 3).
A susceptible agent receiving the infection from either

exogenous or endogenous sources transitions to the latent
state. Before starting the Latent period, the model
computed the duration for each of the subsequent four
stages of illness (Figure 1). In determining these durations,
we sought to reproduce the observed variability in H1N1
progression by drawing the duration of incubation (TInc)
and duration of symptoms (TS) from two log-normal
distributions with parameters from [11]. The illness
duration TIll was calculated by adding TInc and TS. Using
these three values, the total duration of infectiousness TInf

was calculated as:

TInf ¼ TIll �TInf

�TInc þ �TS

where TIll gives the computed duration of illness, �TInf is the
average duration of infectiousness, �TInc shows the average
incubation period, and �TS is average duration of symptoms.
Following the computation of the duration of infectiousness,
the duration of the Symptomatic Infectious state TsInf was
estimated using:

TsInf

TInf
� �TsInf �TInf

The remainder of the durations were computed using
following subtractions:

TaInf ¼ TInf � TsInf

Tlat ¼ TInc � TaInf

TnInf ¼ TS � TsInf

where TaInf represents the asymptomatically infectious
duration, Tlat shows the latent period duration, and TnInf

shows the symptomatic non-infectious duration.
Each infected agent experienced the four illness states

sequentially with the passage of time. A person in the
Asymptomatically Infectious or Symptomatic Infectious
state was considered infective, and could infect other
susceptible adjacent individuals with infection hazard βv.
At each time step and for each adjacent susceptible, the
infective person transmitted the infection with likelihood
density βv. A susceptible receiving H1N1 vaccination
transitioned to the Vaccinated state, and was thereafter
considered immune.
For the sake of the simulation, we assumed no H1N1

mortality. Our study lacked sufficient data to predict
whether a specific individual would elect to self-quaran-
tine given a symptomatic infection, and did not consider
hospitalization outcomes. Given these assumptions, we
chose to regard an individual’s contact patterns as
unaffected by the health status of that individual and
those around them. To examine the degree to which
these assumptions might shape simulation results, we
simulated an additional Monte Carlo ensemble examin-
ing the extreme situation in which individuals removed
themselves from circulation for the duration of their
symptomatic period. Finally, in light of the dominance
of the H1N1 strain during the Saskatchewan 2009–2010
influenza season, only one strain of influenza was
considered.

Simulation setup
The model described in the previous sections was imple-
mented in Network Simulator 3 (ns-3), a discrete-event
simulator. A network of 36 agents was created, where each
agent represented one individual. The Flunet study data
was discretized into 30-second time slots, and at each time
slot the connectivity between each pair of individuals was
updated based on the contacts recorded in the Flunet
dataset. This dynamic contact network can be visualized
as a time-varying graph where edges appear or disappear
every time step depending on whether the two participants
were in contact. The network could also be effectively
encoded as a fully connected graph where edge weights at
every time step have a value of 0 (unconnected) or 1
(connected). The fully connected graph representation can
easily be implemented as a time series of sparse symmetric
matrices (one for every time step) where 0 represents no
connection between the node (i,j) and 1 represents a
connection. A variant of this representation of the con-
nectivity pattern was employed. A flat text file for each
agent was created containing a vector representing the
contact between an agent and all other agents for every
time step in the experiment. Before starting a realization,
each agent loaded the connectivity file, and at each time
step referenced the appropriate vector (line in the file) to
infer its connectivity with other agents at a given time.
To estimate Px, the model required a time series of the

laboratory-confirmed H1N1 cases in Saskatchewan. This
data was extracted from the Public Health Agency of
Canada FluWatch [8] on a weekly basis. As it is shown in
Figure 3, the number of reported cases for the 13 weeks of
the simulation declines monotonically to zero after the 9th

week (January 4th 2010), and therefore Px in the model for
10th week to the end of the simulation was zero.
Each susceptible agent drew from a distribution at

each time-step to determine whether it was infected by
exogenous sources. If it contracted the infection –
whether from exogenous or endogenous sources – the
agent determined the integral duration (in units of time-
steps) for each state of the infection based on the equa-
tions explained in Model Design section, and proceeded
to remain each state for the determined number of time-
steps. During the infectious period, the agent drew from
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a distribution to to determine whether it infected other
nearby susceptible agents.

Scenarios
The simulation explored a three-dimensional scenario
space that examined the impact on model outputs of
four distinct assumptions. The first two assumptions
related to the exogenous and endogenous forces of infec-
tion (FOI). An exogenous FOI coefficient linearly scaled
Px to values that were 1, 2, 4, 8, 16, and 32 times the
baseline. Similarly, the endogenous FOI coefficient scaled
βv by 0.5, 1, 1.5, 2, 2.5, and 3 times the baseline value.
The third assumption varied was whether the H1N1 vac-

cination status from [10] was considered during simulation.
For the case without H1N1 vaccination, none of the self-
reported H1N1 vaccination data was considered. For the
scenarios that account for H1N1 vaccination, participants
started susceptible but transitioned to the Vaccinated state
according the time they reported an H1N1 vaccination in
Flunet health surveys. Individuals who did not report vaccin-
ation in the surveys never entered the Vaccinated state. We
assumed a negligible benefit of vaccination if the agent was
infected at the time of vaccination, and allowed the infection
to run its course.
One supplementary baseline scenario explored the impact

of participants removing themselves from circulation during
their symptomatic period. Note that to compute βv for this
scenario, �Tiwas replaced with �TaInf , where �TaInf was calcu-
lated as the average duration of asymptomatically infectious-
ness of all the previous baseline and alternative scenarios.

In total, the scenario space consisted of three baseline
scenarios and 72 additional scenarios. Each baseline
scenario was simulated using 100,000 Monte Carlo realiza-
tions; the other 72 alternative scenarios were each simu-
lated using 2,500 Monte Carlo realizations. Exploration of
the scenario space (including the baselines and alternative
scenarios) required running 480,000 different realizations.
Figure 3 Weekly laboratory-confirmed H1N1 cases reported in
Saskatchewan.
Metrics for contact networks structure
While static representations of social networks are con-
venient, popular, and can yield powerful insights [17–
20], the temporal aggregation involved may obscure fea-
tures of real contact networks that serve important roles
in the transmission of infectious disease. Our experimen-
tal and simulation design provided us with rich informa-
tion to study network dynamics. However, because
network structure – particularly evolving network struc-
ture – is difficult to represent concisely, derivative mea-
sures are often employed [19]. To quantify the structure
of our network, we employed four centrality measures:
betweenness, degree, time degree, and log time degree.
Betweenness centrality is a classic measure of network

structure that attempts to capture the importance of the
node to the graph’s connectivity, by summing the num-
ber of times a node lies on the shortest path between
two other nodes, calculated using:

CB vð Þ ¼
X

a2Nodes

X

b2Nodes� af g

σab vð Þ
σab

where v is the vertex in question, σab is the number of
shortest paths between a and b, and σab(v) is the number
of shortest paths between vertices a and b that pass
through v, summed over all pairs of vertices in the
graph.
While betweenness captures a global picture of the

network by examining shortest paths, degree centrality
only considers a node’s number of one-hop neighbors.
For a static graph, degree centrality is calculated accord-
ing to:

CD vð Þ ¼ deg vð Þ
n� 1

where deg (v) is the number of edges incident on v, and n
is the number of nodes in the graph. Degree centrality can
capture the local conditions of a node more accurately,
but does not take into account the heterogeneous nature
of the contact patterns and durations evident in our data-
set. As a result, we defined two additional centrality mea-
sures to capture elements of network dynamics.
Time degree centrality (TD) for a node can be defined

as the average over all time slots of the fraction of all
other agents with whom that node is in contact in a
given time slot (analogous to the “strength” metric pro-
posed in [6]). This is computed in our case by summing
up the count of that node’s contacts over all 30-second
time slots in the entire study, and then dividing by both
the number of time slots in the whole study and by the
number of participants minus one. This measure cap-
tures the duration of (potentially concurrent) interper-
sonal contact patterns. People who encounter many
others for short periods would have a large degree cen-
trality, and a similar TD centrality to individuals who



Hashemian et al. BMC Medical Informatics and Decision Making 2012, 12:35 Page 8 of 15
http://www.biomedcentral.com/1472-6947/12/35
spend a great deal of time in a smaller group and have a
smaller degree centrality. Because time degree aggregates
over contact times, and because contact times are often
characterized by exponential or power law distributions
Contact Data Section [6,10,15], we also introduce log
time degree (LTD) centrality as a measure of contact
density. TD and LTD centralities are calculated discretely
as:

CTD vð Þ ¼ 1
Nk

X

k

CD v; kð Þ

CLDT vð Þ ¼ ln CTD vð Þð Þ

where Nk is the total number of time slots in the period
and CD(v,k) is the degree centrality of the vth vertex at
time k. The LTD is simply the natural logarithm of the
time degree. Time degree is normalized and therefore al-
ways less than or equal to one, causing log time degree
to be always negative, with more negative numbers indi-
cating a lower centrality.
If the heterogeneity of the system is dependent on the

network structure, then the likelihood of a participant’s
infection at some point during the study should be cor-
related with appropriate network structure metrics. We
ran Pearson and Spearman correlations using the
MATLAB statistical toolbox against the probability of in-
fection in two baseline simulations (with and without
vaccination) against the four measures of centrality
described above. Given that an individual’s network loca-
tion may also shape their likelihood of transmitting a
pathogen when infected, for the same scenarios as above
we ran correlations of the four centrality measures
against the average number of secondary endogenous
infections directly caused by a node once it was infected.
Finally, to better understand the effect of vaccination
Figure 4 Observed attack rate based on endogenous and exogenous
infected) according to different assumptions about endogenous and exoge
incorporated, while in the right hand panel no vaccination is considered.
status on the correlations derived above, we also used
Student’s t-test to examine the difference in the four
measures of centrality between participants who did and
who did not report vaccination.
Results
We analysed the response of our simulated infections to
changing endogenous and exogenous infection pressure
and the proximity threshold required for transmission to
confirm that the simulation did not produce any signifi-
cant artefacts. This served both as a cross-check on the
H1N1 influenza model proposed in [11] using highly
detailed contact data, and as a confirmation of the
plausibility of our model and approach. With plausibility
of approach established, we then used the baseline sce-
narios to examine the impact of network dynamics on
the spread of infectious disease.
Transmission model
Figure 4 shows the attack rate (fraction of the simulated
study population infected) for 72 different scenarios,
where vaccination effects were and were not considered.
Figure 4a shows the attack rate for simulations that
considered the effect of vaccination, and resulted in
attack rates from 0.01 to 0.49. Figure 4b shows the
graph of scenarios where no immunization through vac-
cination allowed, yielding an attack rate ranging from
0.02 to 0.62.
Self-reporting of participants’ health conditions in the

Flunet dataset [10] indicated that one individual was diag-
nosed with influenza by a physician and two others
reported symptoms characteristic of ILI (2.7% and 8.3% of
the study population, respectively). Given that the para-
meters related to exogenous and endogenous pressures in
this model are derived based on laboratory-confirmed
cases, we compared model results for H1N1 infections to
infection pressure. Attack rate (fraction of endogenous population
nous infection pressure. In the left-hand panel, vaccination effect is
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the single physician-diagnosed case. Because of the sto-
chastic elements in the model, the number of H1N1 cases
occurring in a model scenario varies from realization to
realization. The statistics from baseline simulations in-
corporating vaccination effects give a simulation mean of
0.39 for H1N1 case counts. 82.14% of realizations yielded
no infections within the study population; 10.26% of reali-
zations contained exactly one infection; 7.6% of realiza-
tions yielded 2 or more infections. As the observed count
of 1 person infected falls readily within the 95% empirical
fractile around the mean, the null hypothesis that our
model is consistent with the underlying epidemiological
process cannot be rejected. However, we are cognizant of
the potential statistical shortcomings given our admittedly
small observed population.
Figure 5 shows the number of exogenous and endogenous

infections for two baseline scenarios varying the treatment
of vaccination. The endogenous cases require exogenous
infections to begin transmission through the network. The
lag in response between the exogenous and endogenous
curves is therefore expected. Because the exogenous pres-
sure diminishes to nearly zero by January, the endogenous
infections also disappear quickly. As there is no chance of re-
infection in the model, and because recorded contacts virtu-
ally disappear over the Christmas break, the endogenous
infections also diminish to nearly zero by January.

Impact of overall network structure
Having established that the disease model and para-
meters are broadly consistent with the empirical obser-
vations regarding the H1N1 outbreak in the study
population in Fall 2009, we used two scenarios with
100,000 realizations each (with parameters described in
Methods Section and covering scenarios with and with-
out vaccination) to evaluate the impact of network struc-
ture and dynamics on the spread of disease. Unlike most
previous work in agent-based modeling, this study had
recourse to detailed contact records containing not only
high-fidelity temporal data, but also proximity estimates.
By constraining our inquiry to a single contact criteria
and ILI, we leveraged the strength of our dataset to
Figure 5 Number of infections per week. The number of exogenous and
vaccination (right) over the course of 100,000 runs.
investigate the impact of contact network structure and
contact duration on the spread of a specific disease. Be-
cause of our large-scale Monte Carlo ensembles, we be-
lieve that the variations in the underlying H1N1 model
data have been well explored; therefore, we expect that
heterogeneity in the results of the simulations to be
dominated by the impact of network structure and con-
tact duration rather than simulation artifacts.

Depth of infection
Because the duration of contacts is characterized by an
approximate power law relationship for much of its span
(Figure 2b), it seems reasonable to hypothesize that the
depth of infection spread will follow a similar trend. This
presumes a highly connected network where duration of
contact is the dominant parameter. Considering the final
network connectivity plot shown in Figure 2c, this is a
reasonable – but not entirely justifiable – assumption as
subnets are likely to exist. The CCDF of the depth of in-
fection spread is shown in Figure 6.
In both cases, the plot seems to generally follow a classic

small-world network heavy-tailed power law distribution
[21]. The depth of infection spread is slightly less in the
vaccinated case, and seems to be asymptotic to a lower
depth of infection. The overall shape is not surprising as it
reflects the underlying structure of the network. However,
it is worth noting that the figure shows the probability of
an infection reaching at least a specific depth, normalized
by the number of infections in that condition, so that the
total number of infections represented by the vaccinated
case is actually much lower than in the non-vaccinated
case. This further implies that while vaccinating a fraction
of the population can lower overall incidence rate, the
pathogen can still penetrate the network to nearly the
same degree over unvaccinated links.
Infection impacts
Before analysing impacts, it is necessary to establish ap-
propriate metrics for measuring network connectivity.
Table 1 shows correlation metrics (ρ) and p values for
Pearson and Spearman correlations between likelihood
endogenous infections per week without vaccination (left), and with



Figure 6 Depth of infection spread. Depth of infection spread for scenarios with consideration of vaccination (x’s) and without consideration (o’s).
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of infection and the four measures of centrality intro-
duced in Metric Section for contact networks structure,
for baseline simulations with and without vaccination.
Both tests were employed to highlight the differences in
measures which are rank (Spearman) but not linearly
(Pearson) correlated with infection probability, shedding
light on the nature of the interaction.
Table 1 suggests that, in our experiments, betweenness

centrality fails to capture the elements of network struc-
ture enhancing infection risk, as both experiments pro-
duced weak correlations with non-significant p-values for
both Pearson and Spearman tests. Degree centrality has
similar shortcomings, producing only one significant re-
sult with a moderate correlation and p= 0.012 using Pear-
son’s test, which is counterbalanced by the non-
significant correlation using Spearman’s test. However,
both TD and LTD centralities produce significant correl-
ation results for the non-vaccinated case for both correl-
ation coefficients, and moderately (TD) or very (LTD)
significant correlations for the vaccinated case. We
Table 1 Correlations between centrality measures and
probability of infection in baseline simulations

Ignoring H1N1
Vaccination

Considering H1N1
Vaccination

Pearson Spearman Pearson Spearman

ρ p ρ p ρ p ρ p

Betweenness 0.172 0.316 0.245 0.149 0.110 0.522 0.239 0.160

Degree 0.415 0.012 0.292 0.084 0.296 0.080 0.258 0.128

TD 0.514 0.001 0.744 <0.001 0.344 0.040 0.519 0.001

LTD 0.740 <0.001 0.744 <0.001 0.503 0.002 0.519 0.001
further infer that LTD is a more appropriate measure
than TD because of the higher ρ in the Pearson case.
While TD and LTD are both equivalently rank correlated
under Spearman’s metric, LTD better satisfies the linear-
ity assumptions in Pearson’s metric. We further explore
LTD in Impact section of internal network structure
using regression. Because the variation correlates with a
network structure metric, we infer that the heterogene-
ities in overall infection rate of individuals across all
simulations arise from the network structure or related
parameters, consistent with the findings of [6].
While the correlations between time degree and prob-

ability of infection remain significant in the simulations
that included vaccination information, the degree of cor-
relation diminishes. This result is not surprising, as vac-
cination has a direct impact on the likelihood of
infection, which goes to zero in the model regardless of
the individual’s network connectivity. This observation is
interesting for two reasons: first, it demonstrates that in-
dependent variation in infection likelihood diminishes
the impact of network structure; and second, that even
in the face of a highly non-linear, but not universal, dis-
turbance (not all nodes are vaccinated), the underlying
impact of network structure remains significant.
Student’s t-test was applied for each centrality measure

to test the null hypothesis that those reporting and not
reporting vaccination held identical mean centrality values.
As it is shown in Table 2, p-values returned for the tests
were all more than 0.7, indicating that the hypothesis of
equal means could not be rejected. This further suggests
that participants did not base vaccination decisions on
their centrality and that differences between the vaccinated



Table 2 p-values resulting from applying Student’s t-test
to test the hypothesis of equal means centralities for
those reporting and not reporting vaccination

Betweenness Degree TD LTD

p-Value 0.93 0.723 0.721 0.911
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and non-vaccinated correlations in Table 1 are not due to
a selection bias of high or low centrality participants
opting for or against vaccination.
Transmission impacts
While network structure impacts the population spread of
a pathogen due to its strong effect on infection risk, it also
changes risk of transmission given infection. Table 3 shows
the correlations between an agent’s centrality and the aver-
age number of secondary infections caused by that agent
per episode of infection of that node. The results are gen-
erally similar to the infection risk correlations reported in
Table 1, as expected because contact networks are gener-
ally undirected graphs. Traditional network measures
(betweenness and degree centrality) still exhibit weak and
non-significant correlations. By contrast, TD and LTD
centralities exhibit stronger and consistently statistically
significant correlations. As with risk of infection, when
H1N1 vaccination is considered, the correlations are low-
ered. These results generally confirm those in [6] and
extend them by adding the LTD metric.
Finally, significant correlations between likelihood of

infection and both TD and LTD centralities were main-
tained for those Monte Carlo ensembles in which behavior
change was assumed to limit infection transmission to the
asymptomatic period. The persistence of the correlations in
this extreme case suggests that even in the presence of
strong behavioral change on the part of symptomatic infec-
tives themselves, duration-based measures are likely to re-
main important indicators of infection risk.
Impact of internal network structure
While our number of participants is insufficient to make
strong generalizations about the impact of internal network
Table 3 Correlations between network measures for a
node and number of secondary infections caused by that
node per each time it is infected

Ignoring H1N1
Vaccination

Considering H1N1
Vaccination

Pearson Spearman Pearson Spearman

ρ p ρ p ρ p ρ p

Betweenness 0.184 0.283 0.244 0.151 0.139 0.420 0.253 0.137

Degree 0.399 0.016 0.300 0.076 0.302 0.073 0.296 0.080

Time Degree 0.665 <0.001 0.895 <0.001 0.472 0.004 0.615 <0.001

Log Time Degree 0.802 <0.001 0.895 <0.001 0.590 <0.001 0.615 <0.001
structure on the transmission of infection, the simulations
based on the data can illustrate effects that may be observed
in larger networks. The first and most apparent is the cor-
relation between log time degree and the risk of both infec-
tion and transmission. The impact of network structure and
vaccination on endogenous cumulative infection probability
can be illustrated by plotting LTD against the cumulative
likelihood of infection for both scenarios, as shown in
Figure 7, with a least-squares regression line for the non-
vaccinated, log time centrality data.
Although LTD centrality only offers an approximation of

the likelihood of infection, the log-linear regression suggests
a strong dependence on network structure in the absence
of other effects. People with larger LTD centrality are
linearly more likely to get infected, indicating a degree of
predictive power. To fully verify this hypothesis requires a
more rigorous statistical treatment and a larger participant
population. This relation has limited predictive power be-
cause the probability of infection and therefore the slope of
the line depend not only on the LTD centrality, but the
parameters of the disease, and individual risk factors, which
may be difficult to derive or collect in practice. The most
we can conclude is that people with larger TD centrality
will have a measurably increased risk of infection, with all
other factors held equal.
The graph also indicates that there exists an LTD cen-

trality below which it is impossible to become endogen-
ously infected (near −11). Our own simulated data refutes
this, as even the least connected individuals had non-zero
endogenous infection counts. However, the x intercept
could be usefully interpreted as the centrality below which
infection probability is negligible. Although we have insuf-
ficient data to confirm this, a logical hypothesis to draw
Figure 7 Impact of LTD on endogenous infection probability.
Impact of a node’s log-transformed TD centrality (LTD) and
immunization on endogenous infection probability. Results from two
simulation scenarios are shown: One where the vaccination effect is
considered (x’s), and another where this effect is ignored (o’s). The
red line indicates the least squares fit for the case without
vaccination. Dashed lines represent outliers; solid lines denote a
single identified subnet.
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from Figure 7 is that the overall behavior of infection rate
and LTD is sigmoidal with a linear central region and
asymptotic saturation zones beyond which lower LTD is
unlikely to confer protection, and higher LTD is unlikely
to enhance risk. This would be an interesting avenue of
future research given larger longitudinal datasets.
There are two primary sets of outliers in Figure 7: those

who had very low centralities and did not often get infected
in simulation (dashed line), and the main office staff who
formed a semi-isolated subnet (solid lines). The office staff
subnet has high mutual time degree but limited exposure to
the rest of the network, generating relatively lower
endogenous infection probabilities. This effect is multiplied
by their high vaccination uptake, with 3 of the 4 members
receiving H1N1 vaccination, ensuring herd immunity for
the entire subnet.
To better visualize the impact of network structure and

vaccination, we created a network graph that shows the
participants’ log degree centrality as the size of the node,
and the number of infectious events between those nodes
as the width and color of the line between them. Figure 8a
represents infection events without vaccination and
Figure 8b represents infection events with vaccination status
taken into account.
Several qualitative observations can be made from

Figure 8. The first is that while many participants experi-
enced relatively high infection counts, the most concen-
trated infections occur between subnets of high LTD
participants. There are three subnets in particular, in the
middle-left, upper right and lower right hand portions of
the graph. The middle and upper subnets (corresponding to
different graduate labs) are bridged by a high centrality indi-
vidual while the lower subnet (corresponding to the office
staff) remains relatively isolated. In the vaccinated graph
the middle subnet retains much of its topology while the
upper subnet shows a lower infection count as one of the
Figure 8 Infection transmission across network. Representations of infe
Node size represents participant LTD, node edge color and width represen
high LTD nodes received vaccination. The lower subnet has
its infection rate fall dramatically, as noted above.
The impact of local effects on the office staff subnet is

particularly pronounced, likely due to their strong intra-
subnet and weak inter-subnet connections. If this was the
case, then endogenous infections should be preferentially
transmitted between members of the main office subnet,
and not with members outside their subnets. Table 4 shows
the relative infection rates of the main office subnet.
It is clear from the table that the vast majority of the infec-

tious events occur by passing infection inside the office sub-
net. When one subnet member is infected exogenously,
other members stand a much higher chance of infection,
given their very large subnet LTD. The main office has a rela-
tively small chance of contracting an infection from the rest
of the network, and a much higher chance of contracting an
infection within their own subnet. This forces the infection
rate for LTD down as shown in Figure 7 because – although
their LTD is relatively high – their isolation offers them some
protection. While the phenomenon itself is fascinating, it is
unclear given our small sample size to what degree isolated
networks exist in the population, and to what degree they
drive or inhibit the spread of infection through a population.

Discussion
The work in this paper builds on approaches explored in
important past contributions. These include individual
[4,16] and aggregate [22] transmission models using manu-
ally self-reported contact data that distinguish multiple con-
tact intensities; and recent contributions also include
simulations on sensor-based contact micro-data but using
highly stylized model parameter values not tied to any spe-
cific pathogen [6,7,23]. As the first contribution to combine
epidemiologically grounded transmission modeling of a
specific infection with electronically collected contact
micro-data during an outbreak, the work described here
ction rates across the network without (a) and with (b) vaccination.
t infection events.



Table 4 Fraction of transmission which happened
between the main office subnet and any other member
of the network

Member 1 Member 2 Member 3 Member 4

Fraction of transmission
from/to outside members

6.88% 6.54% 17.89% 0.56%

Hashemian et al. BMC Medical Informatics and Decision Making 2012, 12:35 Page 13 of 15
http://www.biomedcentral.com/1472-6947/12/35
offers some important methodological lessons. Study find-
ings demonstrate the benefits of leveraging multiple data
sources during an epidemic – including electronically col-
lected data – into simulation models. This methodology
highlighted the importance of contact duration variability in
shaping the spread of an airborne pathogen, beyond [6] by
introducing the concept of log time degree motivated by
previous observations of intercontact dynamics. While the
small sample sizes involved greatly limit the strength of the
conclusion, the study is also notable in supporting the
consistency of published parameter estimates for H1N1
models [11] with observed transmission patterns in
Saskatoon.

Limitations
While the results presented here constitute a clear meth-
odological contribution to study of outbreaks, our techni-
ques and data have implicit limitations. First and foremost,
our findings are only demonstrated for the sub-population
under observation, and the particular disease dynamics of
H1N1. Other researchers [24,25] have found differing
impacts for other simulated populations and different
disease dynamics.

� Individual Behavior: We assumed that the contact
dynamics of an individual within the dataset was
independent of their own and their contacts’ infection
status. While we examined an alternative scenario that
examined the impact of assuming extreme behavior
change following the appearance of symptoms, this
scenario does not capture important direct and indirect
effects, including the spread of risk perception, social
distancing, and proactive protective measures among
the study population.

� Data Set Size: Consistent with other electronic contact
monitoring studies [12,13,15], the contact network data
used in this study is drawn from a small and specialized
study population, imposing a strong selection bias.
While the data set here had a modest number of
participants when compared to [6] we collected data
over substantially longer study duration.

� Exogenous Contacts: Lacking significant data on
external contacts, we were forced to assume a uniform
exogenous infection pressure for all individuals based
on population-level statistics, which may mask
potentially important diversity in vulnerability to
external infection.
� Equivalence of Place: In adapting model parameter
estimates from the published H1N1 model, we made
the assumption that the populations experienced
similar basic reproductive numbers – despite
differences in population density and demographics.

Despite such limitations, we believe that the findings pre-
sented here emphasize the utility of combining simulation
modeling and ambulatory data collection, and highlight the
considerable value to be gained in model building, decision
making and operational prioritization by adding duration-
based measures into surveillance. The findings also under-
score the importance of future studies using broader and
more diverse study populations, improved understanding of
exogenous contact patterns and behavior change, and
refined simulation models.

Contributions
Many previous contributions have highlighted heterogeneity
in population contact rates. Particularly pronounced hetero-
geneity has been observed in sexual contacts, for which
contact rates appear to obey power law distributions [25].
Past modeling efforts have emphasized the importance of
such heterogeneity – particularly contact diversity [26] and
concurrency [27] – in the population spread and endemic
persistence of infection. By contrast, prominent past studies
using self-reported casual contact patterns [4] found little
evidence of power-law diversity in contact frequency, but
study design prevented examinations of heterogeneity in
contact durations. While our results support previous long-
term observations using automated data collection [15] of
power-law heterogeneity in contact duration, and its impact
on disease spread [6,7], our modeling results appear to be
the first to use a model grounded in outbreak data to sug-
gest that such heterogeneity in contact duration could be of
equal or greater importance to infection spread as hetero-
geneity in contact frequency. In light of the apparent signifi-
cance of the empirical contact durations for infection
spread, we recommend that other simulation models care-
fully consider and test assumptions made regarding contact
duration and node degree.
The importance of contact duration in modeling infection

spread reflects two key roles that it plays in infection spread.
First, it is a predictor for infection risk. Our results suggest
significantly stronger associations between infection risk
and duration-related network measures than are found
using traditional centrality measures, confirming the results
presented by [6]. We have extended these results to provide
a measure of predictive power by noting that social net-
works tend to scale as truncated power law or exponential
distributions [21], and proposing that the logarithm of total
contact duration better represents the risk than does
duration itself. The advantage offered by duration-related
measures is particularly significant in light of recent
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contributions highlighting strong associations between
degree centrality and risk of infection in contact traced indi-
viduals [28], and the importance of degree centrality for
timing of illness [29]. The correlations in Table 3 and
diagrams in Figure 8 further suggest that, when infected, an
individual with higher contact duration is likely to infect
more individuals. This relationship exhibits a higher degree
of correlation than is seen between secondary infections
and traditional centrality measures. The stronger correla-
tions involving contact duration are of particular interest
given degree centrality’s proposed role as a risk marker for
prioritizing prophylaxis [30]. Both findings suggest that use
of contact-duration-based measures may provide additional
benefit when prioritizing vaccination, contact tracing or
prophylactic treatment.
The desirability of contact-duration measures for model-

ing, decision-making, and operational prioritization has
broader health surveillance implications. Although it is
possible to collect time-weighted duration information
using traditional self-reporting, results of prominent studies
employing self-report have questioned the feasibility of
imposing the additional requisite bookkeeping burden,
further suggesting that automated mechanisms may be
required [4]. Our experience with Flunet suggests that many
people have limited tolerance for the tedium of recollecting
contacts and recording even a rank ordering of those
contacts based on contact duration. In Flunet, participant
compliance with requested self-reporting of their 5 most
common weekly contact durations was just above 25%.
Given the apparent value that time-duration information
offers for simulation modeling and decision-making, these
study results suggest that electronically collected contact
information can offer a particularly valuable role in comple-
menting existing data sources in epidemiological surveil-
lance and investigation.
While other contributions [6,7] have demonstrated the

power of combining micro-contact data with simulation
models, to the best of our knowledge, we are the first to
propose our novel “Groundhog Day” methodology, which
leverages not only the micro-contact data, but empirically
grounded time-varying models of endogenous pressure and
Monte Carlo agent-based simulations. While this technique
could encounter significant computational challenges when
scaling to population-level modeling – even if the contact
data were available – it provides an excellent methodology
for probing and analysing risks of at-risk target populations
such as those in care homes or in college dormitories.

Future research directions
While the contributions of this paper are largely methodo-
logical – pertaining to the use and utility of micro-contact
data in monitoring and modeling outbreaks – we have
made several observations based on our data that merit
further examination in the future using larger datasets. First,
we noted a regressive fit between LTD and infection risk.
With a larger study population, one could utilize standard
epidemiological statistical techniques such as logistic regres-
sion to disambiguate the relative risk of LTD when com-
pared to other factors such as age, gender, occupation, or
socio-economic status. We also hypothesized that the actual
relationship between LTD and infection risk would be char-
acterized by a sigmoidal or similar function, with asymp-
totic minima, corresponding to a baseline chance of
contracting a pathogen from the environment and maxima,
corresponding to the point at which additional links confer
little additional risk, as infectious exposure is almost guar-
anteed. Substantially larger datasets would be required to
probe the extremes of the distribution. Finally, we posited
that the internal network structure can impact the probabil-
ity of infection, by comparing risk between two connected
and one isolated subnet of high LTD participants. The iso-
lated subnet received relatively few endogenous infections
from the rest of the network, but suffered high mutual in-
fection rates. As the workplace conditions of the main office
staff is more in keeping with traditional Western work
habits (predominantly defined schedules, and location) than
graduate students (predominantly undefined schedules, rov-
ing locations), it may be that these isolated subnets could
drive pathogen transmission elsewhere in society more than
currently appreciated. Larger, and ethnographically broader,
datasets will be required to properly investigate this hypoth-
esis. While we have made strong methodological contribu-
tions to the study of pathogen spread, the detailed
questions and hypotheses generated during our analysis
may have a more significant long-term impact.

Conclusions
In this work we have presented the results of combining a
micro-contact dataset and a population health data and
simulation modeling methodology – termed a Groundhog
Day system – for the study of the impact of contact dynam-
ics on the spread of H1N1 influenza through a small study
population during the 2009 flu season. Our results validated
the transmission model, in providing close agreement with
observed infection rates within the study population – as
gathered with surveys. We leveraged the temporal span of
our data to derive a risk metric – log time degree – which
appears to correlate with both risk of being infected and
risk of infecting given infection, all other factors held equal.
The methodology described here is an important step in le-
veraging both personal and scientific computing for the
study of infectious disease.
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